81 research outputs found

    Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    Get PDF
    AbstractThe mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore–microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons

    Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 110, 171105 (2017) and may be found at https://doi.org/10.1063/1.4982621.Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity

    The Influence of Face Inversion and Spatial Frequency on the Self-Positive Expression Processing Advantage

    Get PDF
    Previous research has examined the impact of late self-evaluation, ignoring the impact of the early visual coding stage and the extraction of facial identity information and expression information on the self-positive expression processing advantage. From the perspective of the processing course, this study examined the stability of the self-positive expression processing advantage and revealed its generation mechanism. In Experiment 1, inverted self-expression and others’ expressive pictures were used to influence early structural coding. In Experiments 2a and 2b, we used expression pictures of high and low spatial frequency, thereby affecting the extraction of facial identity information or expression information in the mid-term stage. The visual search paradigm was adopted in three experiments, asking subjects to respond to the target expression. We found that under the above experimental conditions, the search speed for self-faces was always faster than that for self-angry expressions and others’ faces. These results showed that, compared with others’ expressions and self-angry expressions, self-positive expressions were more prominent and more attractive. These findings suggest that self-expression recognition combines with conceptual self-knowledge to form an abstract and constant processing pattern. Therefore, the processing of self-expression recognition was not affected by the facial orientation and spatial frequencies

    Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings

    Get PDF
    An integrated approach to produce photonic orbital angular momentum (OAM) superposition states with arbitrary OAM spectrum has been demonstrated. Superposition states between two vector OAM modes have been achieved by integrating a superimposed angular grating in one silicon micro-ring resonator, with each mode having near equal weight. The topological charge difference between the two compositional OAM modes is determined by the difference between the numbers of elements in the two original gratings being superimposed, while the absolute values of the topological charge can be changed synchronously by switching WGM resonant wavelengths. This novel approach provides a scalable and flexible source for the OAM-based quantum information and optical manipulation applications

    A SLAM Algorithm Based on Adaptive Cubature Kalman Filter

    Get PDF
    We need to predict mathematical model of the system and a priori knowledge of the noise statistics when traditional simultaneous localization and mapping (SLAM) solutions are used. However, in many practical applications, prior statistics of the noise are unknown or time-varying, which will lead to large estimation errors or even cause divergence. In order to solve the above problem, an innovative cubature Kalman filter-based SLAM (CKF-SLAM) algorithm based on an adaptive cubature Kalman filter (ACKF) was established in this paper. The novel algorithm estimates the statistical parameters of the unknown system noise by introducing the Sage-Husa noise statistic estimator. Combining the advantages of the CKF-SLAM and the adaptive estimator, the new ACKF-SLAM algorithm can reduce the state estimated error significantly and improve the navigation accuracy of the SLAM system effectively. The performance of this new algorithm has been examined through numerical simulations in different scenarios. The results have shown that the position error can be effectively reduced with the new adaptive CKF-SLAM algorithm. Compared with other traditional SLAM methods, the accuracy of the nonlinear SLAM system is significantly improved. It verifies that the proposed ACKF-SLAM algorithm is valid and feasible

    HIV-1 genetic diversity a challenge for AIDS vaccine development: A retrospective bibliometric analysis

    Get PDF
    Background: Despite recent advances in human immunodeficiency virus-1 (HIV-1) prevention, a fast, safe, and effective vaccine will probably be necessary to end the HIV/AIDS pandemic. This study was conducted to evaluate global research trends and map the key bibliometric indices in HIV-1 genetic diversity from 1998 to 2021.Methods: A comprehensive online search was conducted in the Web of Science Core Collection database to retrieve published literature on HIV-1 genetic diversity. Key bibliometric indicators were calculated and evaluated using HistCiteTM, Bibliometrix: An R-tool, and VOSviewer software for windows.Results: A total of 2,060 documents written by 9,201 authors and published in 250 journals were included in the final analysis. Year 2012 was the most productive year with 121 (5.87%) publications. The most prolific author was Shao Yiming (n = 74, 3.59%) from Chinese Center for Disease Control and Prevention. The United States of America was the highly contributing and influential country (n = 681, 33.05%). AIDS Research and Human Retroviruses was the most productive journal (n = 562, 27.2%). Network visualization shows that HIV-1 was the most widely used author keyword.Conclusion: This study provides global research trends and detailed information on HIV-1 genetic diversity. The amount of scientific literature on HIV-1 genetic diversity research has rapidly increased in the last two decades. The maximum number of articles on HIV-1 genetic diversity was published in developed countries; therefore, a scientific research collaboration among researchers and institutes in low-income countries should be promoted and supported

    Combined network analysis and interpretable machine learning reveals the environmental adaptations of more than 10,000 ruminant microbial genomes

    Get PDF
    BackgroundThe ruminant gastrointestinal contains numerous microbiomes that serve a crucial role in sustaining the host’s productivity and health. In recent times, numerous studies have revealed that variations in influencing factors, including the environment, diet, and host, contribute to the shaping of gastrointestinal microbial adaptation to specific states. Therefore, understanding how host and environmental factors affect gastrointestinal microbes will help to improve the sustainability of ruminant production systems.ResultsBased on a graphical analysis perspective, this study elucidates the microbial topology and robustness of the gastrointestinal of different ruminant species, showing that the microbial network is more resistant to random attacks. The risk of transmission of high-risk metagenome-assembled genome (MAG) was also demonstrated based on a large-scale survey of the distribution of antibiotic resistance genes (ARG) in the microbiota of most types of ecosystems. In addition, an interpretable machine learning framework was developed to study the complex, high-dimensional data of the gastrointestinal microbial genome. The evolution of gastrointestinal microbial adaptations to the environment in ruminants were analyzed and the adaptability changes of microorganisms to different altitudes were identified, including microbial transcriptional repair.ConclusionOur findings indicate that the environment has an impact on the functional features of microbiomes in ruminant. The findings provide a new insight for the future development of microbial resources for the sustainable development in agriculture

    Smart mobile presenter

    No full text
    During the past years, the development of Android devices, especially the Android phones, is dramatically changing the global technology development tendency. In addition to that, Google had recently published the Voice Typing feature for Android 4.0+. According to the two factors, this FYP student attempted to develop a new mobile application that is powered by Android operation system and featured by the newest technology. The aim of this report was to provide Android device users with an overview and various features of this application. The uniqueness of this application is that users will be able to control their Power Point slides via voice with key words. Besides that, it is also a more user friendly application by eliminating the needs to control the slides via pressing certain buttons. Instead, the application allows user to input voice to control the “Previous”, “Next”, “Start” and “Stop” functions of Microsoft Power Point. At present, minimal researches have been done. In today’s world, there are a variety number of Android applications relating to Power Point Control, which has been widely developed by couples of Android developers (commercially or non-commercially). However, the physical inputs for all those application were needed to control the “next”, “previous”, “start”, “stop” features. On the contrary, this project was aim to control the power point by using voice instead of any physical (touching, shaking, etc.) control. In contrast, this application would highly increase the user friendly experience of the Power Point Control Application. However, there may be better methods to highly enhance the Android Power Point Control Application. More in depth, studies could be done to improve the Android application.Bachelor of Engineerin
    corecore